๐Ÿฑ Project/2021Captone : Cycle GAN Web

Cycle-Consistent Adversarial Networks ๋…ผ๋ฌธ๋ฆฌ๋ทฐ #1

์ง€ ์› 2022. 1. 17. 12:46

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

 

 

Abstract

Image-to-Image ๋ณ€ํ™˜์€ ์ด๋ฏธ์ง€ ์Œ์˜ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์ž…๋ ฅ ์ด๋ฏธ์ง€์™€ ์ถœ๋ ฅ ์ด๋ฏธ์ง€ ์‚ฌ์ด์˜ ๋งคํ•‘์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ

โ†’ ๋Œ€๋ถ€๋ถ„์˜ ์ž‘์—…์˜ ๊ฒฝ์šฐ, ์Œ์œผ๋กœ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„์  ์กด์žฌ

 

์Œ์œผ๋กœ ๋œ ์˜ˆ์‹œ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ, X โ†’ Y ๋กœ ์ด๋ฏธ์ง€๋ฅผ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ• ์ œ์‹œ

โ†’ G:Xโ†’Y ๋ฅผ ์—ญ๋งคํ•‘ F:Yโ†’X ์™€ ๊ฒฐํ•ฉ. F(G(X))โ‰ˆX ์ด ์ ์šฉ๋˜๊ธฐ ์œ„ํ•ด a cycle consistency loss ๋„์ž…

 

 


Introduction

 

 

์™ผ์ชฝ์˜ ์‚ฌ์ง„๋“ค์€ Paired data ์ด๋‚˜, ์˜ค๋ฅธ์ชฝ์˜ ์‚ฌ์ง„๋“ค์€ Unpaired data ๊ตฌ์„ฑ์ฒด

์„œ๋กœ ์Œ์ด ์—†๋Š” ๊ต์œก ๋ฐ์ดํ„ฐ๋Š” X์™€ Y๊ฐ€ ์ผ์น˜ํ•˜๋Š” ์ •๋ณด๋Š” ์ œ๊ณต๋˜์ง€ ์•Š์Œ

 

Cycle GAN ๋ณธ ๋…ผ๋ฌธ์€ ์Œ์œผ๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ์˜ˆ์ œ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ์— ํ•˜๋‚˜์˜ image collection์— ์žˆ๋Š” ํŠน์ง•์„ ์žก์•„๋‚ด ๋‹ค๋ฅธ image collection์œผ๋กœ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™˜ ์‹œํ‚ค๋Š” ํ›ˆ๋ จ์„ ํ•™์Šตํ•  ์ง€ ๊ทธ์—๋Œ€ํ•œ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•จ

 

์Œ์œผ๋กœ ์ž…์ถœ๋ ฅ ๋œ ์˜ˆ์ œ๊ฐ€ ์—†์„ ๋•Œ, ๋„๋ฉ”์ธ๊ฐ„์— ๋ณ€ํ™˜์„ ํ•™์Šต ํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ฐพ๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ

 

 

 

mapping G : X โ†’ Y training

yโˆˆY ์™€ ๊ตฌ๋ณ„๋˜์ง€ ์•Š์•„์•ผ ํ•˜๋Š” output y^ = G(x), xโˆˆX

๋ฐ˜๋Œ€์˜ ํ›ˆ๋ จ(y์™€ y^๋ฅผ ๋ถ„๋ฅ˜)์— ์˜ํ•ด ํ›ˆ๋ จํ•จ

 

์ผ๋ฐ˜์ ์œผ๋กœ G๊ฐ€ ํ™•๋ฅ ์ ์ผ ๋•Œ, ๊ฒฝํ—˜์  ๋ถ„ํฌ Pdata(y) ์™€ ๋น„์Šทํ•œ output y^๋ฅผ ์œ ์ถ”ํ•ด ๋ƒ„

optimal G๋Š” domain X๋ฅผ Y์— ๋™์ผํ•œ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” Y^๋กœ ๋ณ€ํ™˜ํ•จ

๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ณ€ํ™˜์€ x์™€ y๊ฐ€ ์˜๋ฏธ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ์Œ์„ ์ด๋ฃฌ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์žฅํ•˜์ง€ ์•Š์Œ y^์— ๋Œ€ํ•ด ๋™์ผํ•œ ๋ถ„ํฌ๋ฅผ ์œ ๋„ํ•˜๋Š” ๋งคํ•‘ G๋Š” ๋ฌดํ•œํžˆ ๋งŽ์Œ

ํ‘œ์ค€์ ์ธ ์ ˆ์ฐจ๋Š” ๋ชจ๋“  ์ž…๋ ฅํ•œ ์ด๋ฏธ์ง€๊ฐ€ ๋™์ผํ•œ ์ถœ๋ ฅ ์ด๋ฏธ์ง€์— ๋งคํ•‘๋˜๊ณ  ์ตœ์ ํ™”๋Š” ์ง„ํ–‰๋˜์ง€ ๋ชปํ•˜๋Š” mode collapse ์— ๋„๋‹ฌํ•จ

 

์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด '์ฃผ๊ธฐ์  ์ผ๊ด€์„ฑ์ด ์žˆ์–ด์•ผ'ํ•˜๋Š” ํŠน์„ฑ์ด ์žˆ์–ด์•ผ ํ•จ

G:Xโ†’Y, F:Yโ†’X ๊ฐ€ ์žˆ์„ ๋•Œ, G์™€ F๋Š” ์„œ๋กœ ๋ฐ˜๋Œ€์ด๊ณ , ๋‘ ๋งคํ•‘์€ ๋ชจ๋‘ bijection์ด์–ด์•ผ ํ•จ

G์™€ F ๋งคํ•‘์„ ๋™์‹œ์— ํ›ˆ๋ จํ•˜๊ณ , F(G(x)) โ‰ˆ x , G(F(y)) โ‰ˆ y๋ฅผ ๋งŒ์กฑํ•˜๋Š” cycle์˜ consistency loss๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ structural assumption ์„ ์ ์šฉ์‹œํ‚ด

์ด loss๋ฅผ domain X์™€ Y์˜ adversarial loss์™€ ๊ฒฐํ•ฉํ•˜๋ฉด ์ด๋ฏธ๋””์˜ ๋ณ€ํ™˜์— ๋Œ€ํ•œ ์™„์ „ํ•œ ๋ชฉํ‘œ๊ฐ€ ๋‹ฌ์„ฑ๋จ