๐Ÿฑ Project/2021Captone : Cycle GAN Web

Cycle-Consistent Adversarial Networks ๋…ผ๋ฌธ๋ฆฌ๋ทฐ #3

์ง€ ์› 2022. 2. 4. 15:41

Formulation

 

๋ชฉํ‘œ๋Š” training sample x∈X, y∈Y ์ด ์ฃผ์–ด์ง„ domain X์™€ Y๋ฅผ mapping functions์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ชจ๋ธ์—๋Š” ๋‘๊ฐ€์ง€์˜ mapping G, F๊ฐ€ ํฌํ•จ๋˜์–ด์žˆ์Œ(G:X→Y, F:Y→X)

 

๊ทธ๋ฆฌ๊ณ  ๋‘ ๊ฐ€์ง€ discriminator Dx์™€ Dy๋ฅผ ์‚ฌ์šฉํ•จ

 

Dx๋Š” ์ด๋ฏธ์ง€ x์™€ ๋ณ€ํ™˜๋œ ์ด๋ฏธ์ง€ F(y)๋ฅผ ๊ตฌ๋ณ„, Dy๋Š” y์™€ G(x)๋ฅผ ๊ตฌ๋ณ„

⇒ ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€์˜ ๋ถ„ํฌ์™€ target domain์˜ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ์ผ์น˜์‹œํ‚ค ์œ„ํ•ด adversarial losses ์‚ฌ์šฉ

⇒ ํ•™์Šต๋œ ๋งคํ•‘ G์™€ F๊ฐ€ ์„œ๋กœ ๋ชจ์ˆœ๋˜๋Š” ๊ฒƒ์„ ๋ง‰๊ธฐ ์œ„ํ•ด consistency losses ์‚ฌ์šฉ

 

 

Adversarial Loss

 

G๋Š” domain Y์—์„œ ์ด๋ฏธ์ง€์™€ ์œ ์‚ฌํ•œ G(x)๋ฅผ ์ƒ์„ฑํ•˜๋ ค๊ณ  ํ•จ

Dy๋Š” ๋ณ€ํ™˜๋œ G(x)๋ฅผ ์‹ค์ œ์˜ ์ƒ˜ํ”Œ y์™€ ๊ตฌ๋ณ„ํ•˜๋ ค๊ณ  ํ•จ

G๋Š” D์— ๋Œ€ํ•ด ์ด ๋ชฉํ‘œ๋ฅผ ์ตœ์†Œํ™” ํ•˜๋ ค๊ณ  ํ•จ → minG maxDy LGAN(G, DY , X, Y )

์ด์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ F์™€ discriminator Dx์— ๋Œ€ํ•ด → minF maxDx LGAN(F, DX, Y, X)

 

Cycle Consistency Loss

 

ํ•จ์ˆ˜๋Š” cycle-consistent ๊ฐ€ ํ•„์š”

 

x์— ๋Œ€ํ•œ ์ด๋ฏธ์ง€ ๋ณ€ํ™˜ ์ฃผ๊ธฐ๋Š” x๋ฅผ ์›๋ž˜ ์ด๋ฏธ์ง€๋กœ ๋˜๋Œ๋ฆด ์ˆ˜ ์žˆ์–ด์•ผ ํ•จ

x→G(x)→F(G(x))→x (์ˆœ๋ฐฉํ–ฅ ์ฃผ๊ธฐ ์ผ๊ด€์„ฑ, forward cycle consistency)

 

 

ํ•ด๋‹น loss์˜ L1 norm ์„ F(G(x))์™€ x , G(F(y))์™€ y์‚ฌ์ด์˜ adversarial loss๋กœ ๋Œ€์ฒด ํ•ด๋ณด๋ ค ํ–ˆ์œผ๋‚˜ ์„ฑ๋Šฅ์ด ๋”ฑํžˆ ๊ฐœ์„ ๋˜์ง€๋Š” ์•Š์Œ

 

 

Full Objective

์ตœ์ข…๋ชฉํ‘œ๋ฅผ ๋‚˜ํƒ€๋‚ธ ์‹

 

 

๋‘๊ฐœ์˜ ์ž๋™์ธ์ฝ”๋”๋ฅผ ํ›ˆ๋ จํ•ด์•ผํ•  ํ•„์š”๊ฐ€ ์žˆ์Œ

 

์ž๋™์ธ์ฝ”๋”๋Š” ์ด๋ฏธ์ง€๋ฅผ ๋‹ค๋ฅธ domain์œผ๋กœ ๋ณ€ํ™˜์‹œํ‚ค๋Š” intermediate representation์„ ํ†ตํ•ด ๊ทธ๊ฒƒ ์Šค์Šค๋กœ์—๊ฒŒ mappingํ•จ

daversarial loss๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ bottleneck layer๋ฅผ ์ž„์˜์˜ ๋Œ€์ƒ ๋ถ„ํฌ์™€ ์ผ์น˜ํ•˜๋„๋ก ํ›ˆ๋ จ์‹œํ‚จ๋‹ค. ์ด ๊ฒฝ์šฐ์— X→X ์ž๋™์ธ์ฝ”๋”์˜ ๋ชฉํ‘œ ๋ถ„ํฌ๋Š” domain Y์˜ ๋ถ„ํฌ