๐Ÿฑ Project/2021Captone : Cycle GAN Web

Cycle-Consistent Adversarial Networks ๋…ผ๋ฌธ๋ฆฌ๋ทฐ #2

์ง€ ์› 2022. 1. 18. 10:11

Related work

๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€์™€ target domain ์˜ ์ด๋ฏธ์ง€์™€ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์—†๋„๋ก ๋งคํ•‘์„ ํ•™์Šตํ•˜๊ธฐ์œ„ํ•ด adversarial loss๋ฅผ ์‚ฌ์šฉํ•จ

 

 

Image-to-Image Translation

์ด๋“ค์˜ ์ด๋ฏธ์ง€ ๋ณ€ํ™˜์€ Isola๋“ฑ์˜ pix2pix์˜ framework๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•จ. conditional generative adversarial network ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ input-output ์ด๋ฏธ์ง€์˜ mapping ์„ ํ•™์Šตํ•จ

 

 

Unpaired Image-to-Image

Rosales๋“ฑ ๋‘ ๋ฐ์ดํ„ฐ์˜ domain์„ ์—ฐ๊ด€์‹œํ‚ค๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ. ์†Œ์Šค์ด๋ฏธ์ง€์—์„œ ๊ณ„์‚ฐํ•œ Markov random field ์™€ ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ์˜ ์ด๋ฏธ์ง€์—์„œ ์–ป์€ likelihood term ์„ ํฌํ•จํ•˜๋Š” Bayesian framework๋ฅผ ์ œ์•ˆ.

Liu ๋“ฑ์€ variational autoencoders์™€ generative adversarial networks๋กœ ์œ„์˜ frame work๋ฅผ ํ™•์žฅ์‹œํ‚ด.

๋˜ ๋‹ค๋ฅธ ์ž‘์—… ๋ผ์ธ์€ input๊ณผ output์ด ๊ทธ๋“ค์˜ ์Šคํƒ€์ผ์ด ๋‹ค๋ฅด๋”๋ผ๋„ ํŠน์ •ํ•œ content๋Š” ๊ณต์œ ํ•˜๋„๋ก ํ•จ. ์œ„์™€ ๊ฐ™์€ ๋ฐฉ๋ฒ•์€ ๋ฏธ๋ฆฌ ์ •์˜๋œ metric ๊ณต๊ฐ„์—์„œ output์ด input์— ๊ทผ์ ‘ํ•˜๋„๋ก ํ•˜๋Š” ์ถ”๊ฐ€์ ์ธ term๊ณผ adversarial networks๋ฅผ ์‚ฌ์šฉํ•จ.

๊ทธ๋Ÿฌ๋‚˜ ์œ„์˜ ์ ‘๊ทผ๋ฒ•๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ, ํ•ด๋‹น ๋…ผ๋ฌธ์€ ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ ์‚ฌ์ด์˜ ์ž‘์—…๋ณ„๋กœ ์‚ฌ์ „์— ์ •์˜๋œ ์œ ์‚ฌ์„ฑ ํ•จ์ˆ˜์— ์˜์กดํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ์ด ๋™์ผํ•œ ์ €์ฐจ์›์˜ embedding space ์— ์žˆ์–ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ง€๋„ ์•Š์Œ. ์ด ๋…ผ๋ฌธ์˜ ๋ฐฉ๋ฒ•์€ ๋งŽ์€ vision๊ณผ ๊ทธ๋ž˜ํ”ฝ ์ž‘์—…์„ ์œ„ํ•œ ์ผ๋ฐ˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์ด ๋จ → Section 5.1

 

 

Cycle Consistency

์ด ์ž‘์—…์—์„œ๋Š” G์™€ F๊ฐ€ ์„œ๋กœ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋น„์Šทํ•œ loss๋ฅผ ์‚ฌ์šฉํ•จ machine translation์˜ ์ด์ค‘ ํ•™์Šต์— ์˜๊ฐ์„ ๋ฐ›์•„, unpaired ์ด๋ฏธ์ง€ ๋ณ€ํ™˜์— ๋…๋ฆฝ์ ์œผ๋กœ ์œ ์‚ฌํ•œ ๋ชฉํ‘œ๋ฅผ ์‚ฌ์šฉํ•จ

 

 

Neural Style Transfer

image-to-image ๋ณ€ํ™˜์˜ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ๋ฏธ๋ฆฌ ํ›ˆ๋ จ๋œ deep feature์˜ Gram matrix statistics์™€ ์ผ์น˜ํ•˜๋Š” ๋‹ค๋ฅธ ์ด๋ฏธ์ง€ ์Šคํƒ€์ผ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ์Œ

๋” ๋†’์€ ์ˆ˜์ค€์˜ ์™ธ๊ด€ ๊ตฌ์กฐ ์‚ฌ์ด์˜ ๋Œ€์‘ ๊ด€๊ณ„ ํฌ์ฐฉ์„ ์œ„ํ•ด ๋‘ ๊ฐœ์˜ ํŠน์ •ํ•œ ์ด๋ฏธ์ง€๊ฐ„ ๋ณด๋‹ค๋Š”, ๋‘ ์ด๋ฏธ์ง€ ๋ชจ์Œ๊ฐ„์˜ mapping์„ ํ•™์Šตํ•ด์•ผํ•จ