๐Ÿฑ Project 6

Django - #1. ํ™˜๊ฒฝ ๋งŒ๋“ค๊ธฐ

๊ทธ๋™์•ˆ Django์— ๋Œ€ํ•ด์„œ ๊ณต๋ถ€ํ•œ ๊ฒƒ๋“ค์„ ์‚ฌ์šฉํ•ด์„œ ์ฑ…์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ํ™•์ธํ•˜๊ณ , ๋Œ“๊ธ€์„ ๋‹ฌ ์ˆ˜ ์žˆ๋Š” ์›น ํŽ˜์ด์ง€๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ œ์ž‘ํ•ด ๋ณด๋ ค๊ณ  ํ•œ๋‹ค. ์šฐ์„ , ํ”„๋กœ์ ํŠธ๋ฅผ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ์šฐ์„  ๊ฐ€์ƒํ™˜๊ฒฝ์„ ๋งŒ๋“ค์–ด ์ค€๋‹ค. ๊ฐ€์ƒํ™˜๊ฒฝ, ํŒจํ‚ค์ง€ ์„ค์น˜ ๊ฐ€์ƒํ™˜๊ฒฝ ์„ค์น˜ python -m venv venv ๊ฐ€์ƒํ™˜๊ฒฝ ์ผœ๊ธฐ source venv/Scipts/activate ๊ฐ€์ƒํ™˜๊ฒฝ ์ข…๋ฃŒ deactivate ๊ฐ€์ƒํ™˜๊ฒฝ ์ค€๋น„๊ฐ€ ๋๋‹ค๋ฉด requirements.txt ๋ฅผ ์‚ฌ์šฉํ•ด ์žฅ๊ณ ์™€ ํ•„์š”ํ•œ ํŒจํ‚ค์ง€๋ฅผ ์„ค์น˜ํ•œ๋‹ค. pip install -r requirements.txt ํŒจํ‚ค์ง€ ๋ชฉ๋ก์„ ์ƒ์„ฑํ•˜๋Š” ์ฝ”๋“œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. pip freeze > requirements.txt ์žฅ๊ณ  ํ”„๋กœ์ ํŠธ, ์•ฑ ์ƒ์„ฑ ์žฅ๊ณ  ํ”„๋กœ์ ํŠธ ์ƒ์„ฑ django-admin startpr..

Cycle-Consistent Adversarial Networks ๋…ผ๋ฌธ๋ฆฌ๋ทฐ #3

Formulation ๋ชฉํ‘œ๋Š” training sample x∈X, y∈Y ์ด ์ฃผ์–ด์ง„ domain X์™€ Y๋ฅผ mapping functions์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ชจ๋ธ์—๋Š” ๋‘๊ฐ€์ง€์˜ mapping G, F๊ฐ€ ํฌํ•จ๋˜์–ด์žˆ์Œ(G:X→Y, F:Y→X) ๊ทธ๋ฆฌ๊ณ  ๋‘ ๊ฐ€์ง€ discriminator Dx์™€ Dy๋ฅผ ์‚ฌ์šฉํ•จ Dx๋Š” ์ด๋ฏธ์ง€ x์™€ ๋ณ€ํ™˜๋œ ์ด๋ฏธ์ง€ F(y)๋ฅผ ๊ตฌ๋ณ„, Dy๋Š” y์™€ G(x)๋ฅผ ๊ตฌ๋ณ„ ⇒ ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€์˜ ๋ถ„ํฌ์™€ target domain์˜ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ์ผ์น˜์‹œํ‚ค ์œ„ํ•ด adversarial losses ์‚ฌ์šฉ ⇒ ํ•™์Šต๋œ ๋งคํ•‘ G์™€ F๊ฐ€ ์„œ๋กœ ๋ชจ์ˆœ๋˜๋Š” ๊ฒƒ์„ ๋ง‰๊ธฐ ์œ„ํ•ด consistency losses ์‚ฌ์šฉ Adversarial Loss G๋Š” domain Y์—์„œ ์ด๋ฏธ์ง€์™€ ์œ ์‚ฌํ•œ G(x)๋ฅผ ์ƒ์„ฑํ•˜๋ ค๊ณ  ํ•จ Dy๋Š” ๋ณ€ํ™˜๋œ G..

Cycle-Consistent Adversarial Networks ๋…ผ๋ฌธ๋ฆฌ๋ทฐ #2

Related work ๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€์™€ target domain ์˜ ์ด๋ฏธ์ง€์™€ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์—†๋„๋ก ๋งคํ•‘์„ ํ•™์Šตํ•˜๊ธฐ์œ„ํ•ด adversarial loss๋ฅผ ์‚ฌ์šฉํ•จ Image-to-Image Translation ์ด๋“ค์˜ ์ด๋ฏธ์ง€ ๋ณ€ํ™˜์€ Isola๋“ฑ์˜ pix2pix์˜ framework๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•จ. conditional generative adversarial network ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ input-output ์ด๋ฏธ์ง€์˜ mapping ์„ ํ•™์Šตํ•จ Unpaired Image-to-Image Rosales๋“ฑ ๋‘ ๋ฐ์ดํ„ฐ์˜ domain์„ ์—ฐ๊ด€์‹œํ‚ค๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ. ์†Œ์Šค์ด๋ฏธ์ง€์—์„œ ๊ณ„์‚ฐํ•œ Markov random field ์™€ ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ์˜ ์ด๋ฏธ์ง€์—์„œ ์–ป์€ likelihood term ์„ ํฌํ•จํ•˜๋Š” Bayesian framework๋ฅผ..

Cycle-Consistent Adversarial Networks ๋…ผ๋ฌธ๋ฆฌ๋ทฐ #1

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks Abstract Image-to-Image ๋ณ€ํ™˜์€ ์ด๋ฏธ์ง€ ์Œ์˜ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์ž…๋ ฅ ์ด๋ฏธ์ง€์™€ ์ถœ๋ ฅ ์ด๋ฏธ์ง€ ์‚ฌ์ด์˜ ๋งคํ•‘์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ → ๋Œ€๋ถ€๋ถ„์˜ ์ž‘์—…์˜ ๊ฒฝ์šฐ, ์Œ์œผ๋กœ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„์  ์กด์žฌ ์Œ์œผ๋กœ ๋œ ์˜ˆ์‹œ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ, X → Y ๋กœ ์ด๋ฏธ์ง€๋ฅผ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ• ์ œ์‹œ → G:X→Y ๋ฅผ ์—ญ๋งคํ•‘ F:Y→X ์™€ ๊ฒฐํ•ฉ. F(G(X))≈X ์ด ์ ์šฉ๋˜๊ธฐ ์œ„ํ•ด a cycle consistency loss ๋„์ž… Introduction ์™ผ์ชฝ์˜ ์‚ฌ์ง„๋“ค์€ Paired data ์ด๋‚˜, ์˜ค๋ฅธ์ชฝ์˜ ์‚ฌ์ง„๋“ค์€ Unpaired data ๊ตฌ์„ฑ์ฒด ์„œ๋กœ..

Cycle GAN ์ •๋ฆฌ #2

Training Details 1. Generator G U-Net ์€ ์ฒ˜์Œ์˜ detail ์ด ๋ฐ”๋กœ ๋งˆ์ง€๋ง‰๊นŒ์ง€ ์ „๋‹ฌ ๊ฐ€๋Šฅ → detail ๊ฐ„์ง์ด ์ž˜ ๋œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์Œ. ๊ทธ๋Ÿฌ๋‚˜, ๋‘ data set(๊ทธ๋ฆผ - ์‚ฌ์ง„ ; ๋น„์Šทํ•˜๋‹ค๊ณ  ๋ด„) ์ด ๋น„์Šทํ•œ ๊ฒฝ์šฐ์—๋Š” skip connection์„ ๋งŽ์ด ์‚ฌ์šฉ ํ•˜๋ ค๊ณ  ํ•จ(๊ณ ํ•ด์ƒ๋„๋ฅผ ์œ„ํ•ด). skip connection ์—๋Š” depth๊ฐ€ ๋งŽ์ด ์—†์Œ. → ์ƒ์„ฑ๋˜๋Š” ๊ฒฐ๊ณผ๋ฌผ์ด ๋ณ„๋กœ ๋งŒ์กฑ ์Šค๋Ÿฝ์ง€ ๋ชปํ•จ. ์œ„์˜ ๋‹จ์ ์„ ๊ทน๋ณต ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๋Š” ResNet์„ ์‚ฌ์šฉ depth๊ฐ€ ์žˆ์œผ๋ฉด์„œ, detail์„ ๊ฐ„์ง ํ•  ์ˆ˜ ์žˆ์Œ. ์ด๋ฏธ์ง€์˜ ํ€„๋ฆฌํ‹ฐ๋ฉด์—์„œ ๊ฐ€์žฅ ์ข‹์€ ๊ฒฐ๊ณผ๋ฌผ์„ ๋ƒ„ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ๋งŽ์ด ์‚ฌ์šฉ → ์ƒ์„ฑ ํ•  ์ˆ˜ ์žˆ๋Š” parameter ์ˆ˜๊ฐ€ ์ ์Œ ⇒ ๋งŽ์€ ํ˜•ํƒœ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด ๋‚ผ ์ˆ˜ ์—†๋Š” ๋‹จ์  ์กด์žฌ Bot..

Cycle GAN ์ •๋ฆฌ #1

https://youtu.be/Fkqf3dS9Cqw Cycle GAN ๋…ผ๋ฌธ ์ €์ž๋‹˜์˜ ๋ฐœํ‘œ๊ฐ•์˜ ์˜์ƒ Cycle GAN ์‚ฌ์ง„์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋Š” 2๊ฐ€์ง€์˜ data set ์„ ์ด์šฉํ•˜์—ฌ ํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์˜ style๋กœ ๋ณ€ํ™˜ How does it work? pix2pix GAN Cycle GAN pix2pix input ๊ณผ out์ด ๋ชจ๋‘ ์‚ฌ์ง„์ด์–ด์•ผ ํ•˜๋Š” supervised learning framework Goal : ํ‘๋ฐฑ์‚ฌ์ง„์€ ์ปฌ๋Ÿฌ์‚ฌ์ง„์œผ๋กœ ๋ฐ”๊ฟ”์ฃผ๋Š” neural network train test ํ‘๋ฐฑ → ? train ๋„ํ˜•→์‚ฌ์ง„ test ๋„ํ˜•→? Loss : output G(x) and ground truth y ์˜ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™” → ์–ด๋–ค ๊ฒƒ์ด ๊ฐ€์žฅ ์˜ณ์€ ๊ฒƒ์ธ์ง€ (์‚ฌ๋žŒ์€ ์•Œ ์ˆ˜ ์žˆ์œผ๋‚˜) ํŒ๋‹จ ํ•  ์ˆ˜ ์—†์œผ๋ฏ€๋กœ..